Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function.
Updated June 20, 2024Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Single-nucleus cross-tissue molecular reference maps to decipher disease gene function (Official HCA Publication)
Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. (Official HCA Publication)
To reference this project, please use the following link:
Supplementary links are provided by contributors and represent items such as additional data which can’t be hosted here; code that was used to analyze this data; or tools and visualizations associated with this specific dataset.
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
Project Label
CrossTissueReferenceMapSpecies
Homo sapiens
Sample Type
specimens
Anatomical Entity
Organ Part
Selected Cell Types
Unspecified
Disease Status (Specimen)
normal
Disease Status (Donor)
normal
Development Stage
Library Construction Method
10x 3' v2
Nucleic Acid Source
single nucleus
Paired End
falseAnalysis Protocol
analysis_protocolFile Format
Cell Count Estimate
209.1kDonor Count
16