Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids
Updated March 6, 2024Cis-regulatory elements (CREs) play a critical role in the development and disease-states of all human cell types. In the retina, CREs have been implicated in several inherited disorders. To better characterize human retinal CREs, we performed single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-nucleus RNA sequencing (snRNA-seq) on the developing and adult human retina and on induced pluripotent stem cell (iPSC)-derived retinal organoids. These analyses identified developmentally dynamic, cell-class-specific CREs, enriched transcription-factor-binding motifs, and putative target genes. CREs in the retina and organoids are highly correlated at the single-cell level, and this supports the use of organoids as a model for studying disease-associated CREs. As a proof of concept, we disrupted a disease-associated CRE at 5q14.3, confirming its principal target gene as the miR-9-2 primary transcript and demonstrating its role in neurogenesis and gene regulation in mature glia. This study provides a resource for characterizing human retinal CREs and showcases organoids as a model to study the function of CREs that influence development and disease.
To reference this project, please use the following link:
Supplementary links are provided by contributors and represent items such as additional data which can’t be hosted here; code that was used to analyze this data; or tools and visualizations associated with this specific dataset.
Downloaded and exported data is governed by the HCA Data Release Policy and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). For more information please see our Data Use Agreement.
Atlas
Analysis Portals
NoneProject Label
CREDiseaseRetinaSpecies
Homo sapiens
Sample Type
Anatomical Entity
Organ Part
retina
Selected Cell Types
Unspecified
Model Organ
Disease Status (Specimen)
normal
Disease Status (Donor)
normal
Development Stage
Library Construction Method
Nucleic Acid Source
single nucleus
Paired End
false, trueAnalysis Protocol
ATAC_peaks, raw_matrix_generationFile Format
Cell Count Estimate
510.0kDonor Count
12